[CF868-F] Yet Another Minimization Problem

[CF868-F] Yet Another Minimization Problem

时间限制:1000MS 内存限制:262144KB

难度:\(6.0\)

  • 题目描述

有 \(n\) 个正整数构成序列 \(a\) ,定义一个区间 \([l, r]\) 的代价为 满足 \(l \leq i, j \leq r\) 并使得 \(a_i=a_j\) 的无序对 \([i, j]\) 的数量。

现要把 \(a\) 分成 \(k\) 个互不相交且不为空的连续的区间,求出在所有分法中,分出区间的最小代价和是多少。

  • 输入格式

第一行,两个正整数 \(n, k\) 。

第二行,序列 \(a\) ,共 \(n\) 个元素,用一个空格隔开。

  • 输出格式

一个整数,表示在所有分法中,分出区间的最小代价和。

  • 样例输入

  • 样例输出

  • 样例说明

一种可能的分法为 \([1], [1, 3], [3, 3, 2, 1]\) 。

第一个区间的代价为 \(0\) ,第二个区间的代价为 \(0\) ,第三个区间的代价为 \(1\) ,最小代价和为 \(1\) 。

(其他样例见原题

  • 数据范围

对于 \(10\%\) 的数据,\(2 \leq n \leq 20\) 。

对于 \(40\%\) 的数据,\(2 \leq n \leq 1000\) 。

对于 \(100\%\) 的数据,\(2 \leq n \leq 10^5\) ,\(2 \leq k \leq min\{20,n\}\) 。

保证 \(1 \leq a_i \leq n\) 。

 

 

 

\(Source\): CF868-F

[2017-2018 Petrozavodsk WC] J. Subsequence Sum Queries

[2017-2018 Petrozavodsk WC] J. Subsequence Sum Queries

时间限制:2000MS 内存限制:262144KB

难度:\(5.2\)

  • 题目描述

给定一个长度为 \(n\) 的非负整数序列 \(a\) 和一个正整数 \(m\) 。

现在有 \(q\) 组询问,每组询问给定两个正整数 \(l, r\) ,每次可以选择满足 \(l \leq i \leq r\) 的若干个 \(a_i\) (也可以一个都不选),使得这些 \(a_i\) 的和是 \(m\) 的非负整数倍,并输出满足条件的选择方案数对 \(10^9+7\) 取模后的余数。

  • 输入格式

第一行为两个正整数 \(n\) 和 \(m\) 。

第二行为序列 \(a\) ,共 \(n\) 个元素,用一个空格隔开。

第三行为询问数 \(q\) 。

接下来的 \(q\) 行,每一行都有两个正整数,分别为 \(l\) 和 \(r\) 。

  • 输出格式

共 \(q\) 行。

第 \(i\) 行为第 \(i\) 组询问的答案。

  • 样例输入

  • 样例输出

  • 样例说明

对于第一组询问 \(l=1, r=2\) ,有 不选、选择 \(5, 1\) ,共 \(2\) 种情况。

对于第二组询问 \(l=1, r=3\) ,有 不选、选择 \(5, 1\) 、选择 \(5, …

YZOJ P2202 Legend VII – Ornament

YZOJ P2202 Legend VII – Ornament

时间限制:1000MS 内存限制:131072KB

难度:\(5.0\)

  • 题目描述

  • 输入格式

第一行有两个整数 \(N\) 和 \(Q\),表示商店有 \(N\) 个装饰品,一共有 \(Q\) 个询问。

第二行有 \(N\) 对整数,每 \(i\) 对整数 \(p_i, b_i\) 表示第 \(i\) 个装饰品的价格和好看度。

接下来 \(Q\) 行,每行两个整数 \(a, c\),分别描述 \(Q\) 个询问。

  • 输出格式

对于每个询问输出一行,一个整数表示最大好看度。

  • 样例输入

  • 样例输出

  • 数据规模与约定

对于 \(30\%\) 的数据,\(N \leq 100, Q \leq 1000\) 。

对于 \(100\%\) 的数据,\(N \leq 1000, Q \leq 100000, 1 \leq a \leq N, c \leq 1000\) 。

 

 

 …

YZOJ P2384 Naive – DP II

YZOJ P2384 Naive – DP II

时间限制:2000MS 内存限制:768KB

难度:\(5.0\) 出题人:lightning

  • 题目描述

请注意不寻常空间限制

由于空间的限制,无法直接给出每个位置的金币数量,所以需要用一种新的方法来得到金币的数量——定义长度为 \(P\) 的数组 \(P\) 和长度为 \(T\) 的数组 \(T\),棋盘 \((i,j)\) 上的金币数量为 \((P_i+T_j) \bmod Mod\) 。

  • 输入格式

第一行输入三个整数,\(P\)、\(T\)、\(Mod\) 。

第二行输入 \(P\) 个整数,表示数组 \(P\) 。

第三行输入 \(T\) 个整数,表示数组 \(T\) 。

  • 输出格式

输出包括两行——

第一行输出一个整数表示获得的最多的金币数。

第二行输出方案,方案用一个只包含 \(P\) 和 \(T\) 的字符串表示,\(P\) 表示向下、\(T\) 表示向右。

  • 样例输入

  • 样例输出

  • 数据规模与约定

对于 \(30\%\) 的数据,\(P, T \leq 100\) 。

对于 \(100\%\) 的数据,\(P, T \leq 5000,Mod \leq 100000\) 。

 

 

 …